Respuesta :

Solution:

Given a cosine function graph;

The general cosine function is

[tex]y=A\cos(Bx-C)+D[/tex]

Where

[tex]\begin{gathered} A\text{ is the amplitude} \\ Period=\frac{2\pi}{B} \\ C\text{ is the phase shift} \\ D\text{ is the vertical shift} \end{gathered}[/tex]

From the graph,

The midline is y = 1

The amplitude, A, is

[tex]\begin{gathered} A=4-1=3 \\ A=3 \end{gathered}[/tex]

The amplitude, A is 3

Where,

[tex]\begin{gathered} Period=12 \\ Period=\frac{2\pi}{B} \\ 12=\frac{2\pi}{B} \\ Crossmultiply \\ 12B=2\pi \\ Duvide\text{ both sides by 12} \\ \frac{12B}{12}=\frac{2\pi}{12} \\ B=\frac{\pi}{6} \end{gathered}[/tex]

The phase shift, C = 0, and the vertical, D, is 1

Thus, the equation of the graph is

[tex]\begin{gathered} y=A\cos(Bx-C)+D \\ Where \\ A=3 \\ B=\frac{\pi}{6} \\ C=0 \\ D=1 \\ y=3\cos(\frac{\pi}{6}x)+1 \end{gathered}[/tex]

The graph is shown below

Hence, the equation is

[tex]y=3\cos(\frac{\pi}{6}x)+1[/tex]

Ver imagen PollyannaK607760