Given the information on the picture, we have the following right triangle:
we can use the tangent trigonometric function to find the height of the tree:
[tex]\begin{gathered} tan(44)=\frac{\text{opposite side}}{adjacent\text{ side}}=\frac{h}{90} \\ \Rightarrow\tan (44)=\frac{h}{90} \end{gathered}[/tex]solving for h, we get:
[tex]\begin{gathered} \frac{h}{90}=\tan (44) \\ \Rightarrow h=90\cdot\tan (44)=86.9\approx87 \\ h=87ft \end{gathered}[/tex]therefore, the height of the tree is 87 ft