Respuesta :

We have the next function that models the Australian GDP since 1960 :

[tex]G(i)=1806x(1.037)^t[/tex]

Where t is the number of years since 1960.

a)If we are in the year 1960, it means t=0

Therefore:

[tex]G(t)=1806x(1.037)^1[/tex][tex]G(0)=1806x(1.037)^0[/tex][tex]G(0)=1806[/tex]

b)Now, we need to find the Australia capita in 1963.

This means t=3

Therefore:

[tex]G(t)=1806x(1.037)^t[/tex][tex]G(3)=1806x(1.037)^3[/tex][tex]G(3)=2013.974721[/tex]

c) We need to find when the function is equal to 100,000.

Therefore we equal the function G(t)=100,000.

Then:

[tex]1806x(1.037)^t=1000000[/tex]

Solve for t:

Divide both sides by 1806:

[tex]\frac{1806x(1.037)^t}{1806}=\frac{100000}{1806}[/tex][tex](1.037)^t=\frac{50000}{903}[/tex]

Add Ln for each side:

[tex]\ln (1.037)^t=in(\frac{50000}{903})[/tex][tex]t\ln (1.037)=in(\frac{50000}{903})[/tex]

Then:

[tex]t=\frac{in(\frac{50000}{903})}{\ln (1.037)}[/tex][tex]t=110.48286[/tex]

Rounded to the nearest year:

[tex]t=110[/tex]

Therefore: 1960 +110 = 2070

On 2070 the Austranlian GDP reaches 100,000 USD