Respuesta :

Given that f(x) = 3 sin (2x) + 1

Given that : a sin (bx + c ) + d

let a = amplitude,

Midline is the that runs between the maximum and minimum value

[tex]\begin{gathered} \text{ Since, amplitude = 3} \\ \text{the graph is shifted 1 unit in positive y - coordinate} \\ \text{Maximum value = 3 - 1 = 2} \\ \text{ minimum value = -3 - 1 = -4} \\ \text{Midline is the center of (2, - 4)} \\ \text{Midline = }\frac{\text{2 - 4}}{2} \\ \text{midline = -1} \end{gathered}[/tex]

Period is calculated as

[tex]\begin{gathered} \text{period = }\frac{2\pi}{|b|} \\ \\ \text{b = 2} \\ \text{Period = }\frac{2\pi}{2} \\ \text{Period = }\pi\text{second} \end{gathered}[/tex]

Frequency = 1 / period

[tex]\text{frequency = }\frac{1}{\pi}\text{ Hz}[/tex]