Respuesta :

Answer: (x - 1)

Explanation

Given:

[tex]x^3+x^2-4x-4[/tex]

To factor a third-degree polynomial, we can do it by grouping:

[tex]=(x^3+x^2)+(-4x-4)[/tex]

Then, we have to find the common factor between groups:

[tex]=x^2(x+1)-4(x+1)[/tex]

Now, we can get the common factor of (x+1):

[tex]=(x^2-4)(x+1)[/tex]

Finally, the differences of squares equal the following:

[tex](x^2-a^2)=(x-a)(x+a)[/tex]

Then, applying this rule to our factor we get:

[tex]=(x+2)(x-2)(x+1)[/tex]

Thus, the only factor that is not correct is (x - 1)