Answer: (x - 1)
Explanation
Given:
[tex]x^3+x^2-4x-4[/tex]To factor a third-degree polynomial, we can do it by grouping:
[tex]=(x^3+x^2)+(-4x-4)[/tex]Then, we have to find the common factor between groups:
[tex]=x^2(x+1)-4(x+1)[/tex]Now, we can get the common factor of (x+1):
[tex]=(x^2-4)(x+1)[/tex]Finally, the differences of squares equal the following:
[tex](x^2-a^2)=(x-a)(x+a)[/tex]Then, applying this rule to our factor we get:
[tex]=(x+2)(x-2)(x+1)[/tex]Thus, the only factor that is not correct is (x - 1)