Respuesta :

Let

A(3,6) B(0,-2) C(-7,-5) D(-4,3)

Remember that

A parallelogram has opposite sides congruent and parallel

so

step 1

Find out the length of the side AB

using the formula to calculate the distance between two points

[tex]\begin{gathered} AB=\sqrt{(-2-6)^2+(0-3)^2} \\ AB=\sqrt{73} \end{gathered}[/tex]

Find out the slope of the side AB

[tex]m_{AB}=\frac{-2-6}{0-3}=\frac{8}{3}[/tex]

step 2

Find out the length of the side BC

[tex]\begin{gathered} BC=\sqrt{(-5+2)^2+(-7-0)} \\ BC=\sqrt{58} \end{gathered}[/tex]

Find out the slope of the side BC

[tex]m_{BC}=\frac{-5+2}{-7-0}=\frac{3}{7}[/tex]

step 3

Find out the length of the side CD

[tex]\begin{gathered} CD=\sqrt{(3+5)^2+(-4+7)^2} \\ CD=\sqrt{73} \end{gathered}[/tex]

Find out the slope of the side CD

[tex]m_{CD}=\frac{3+5}{-4+7}=\frac{8}{3}[/tex]

step 4

Find out the length of the side AD

[tex]\begin{gathered} AD=\sqrt{(3-6)^2+(-4-3)^2} \\ AD=\sqrt{58} \end{gathered}[/tex]

Find out the slope of the side AD

[tex]m_{AD}=\frac{3-6}{-4-3}=\frac{3}{7}[/tex]

step 5

Compare the length of the sides

we have that

AB=CD

BC=AD

that means ----> opposite sides are congruent

Compare their slopes

mAB=mCD

mBC=mAD

that means ----> opposite sides are parallel

therefore

The given figure is a parallelogram