The equations of the line segments are,
[tex]\begin{gathered} AB\colon y=\frac{1}{3}x+1 \\ BC\colon y=-3x+11 \end{gathered}[/tex]Calculate the equations of CD and AD.
The equation of line Cd is,
[tex]\begin{gathered} (y-(-3))=\frac{-1+3}{4+2}(x+2) \\ y+3=\frac{1}{3}(x+2) \\ 3y=x-7 \end{gathered}[/tex]The equation of the line AD is,
[tex]\begin{gathered} y-0=\frac{-3-0}{-2+3}(x+3) \\ y=-3x-9 \end{gathered}[/tex]1)If two lines are parallel slope will be equal and perpendicular product of slope will be -1.
From the equation, the slope of AB is 1/3
From the equation, the slope of Cd is 1/3.
So, they are parallel.
2)The slope of AB is 1/3.
The slope of BC is -3.
The product of two slopes is -1. Therefore, AB is perpendicular to BC.
3) The slope of AB is 1/3 and slope of AD is -3. Since, the product is -1, they are perpendicular.
Another pair of line segments that are perpendicular to each other is AB and AD.