two systems of equations are given below. for each system, choose the best description of its solution. if applicable, give the solution.

two systems of equations are given below for each system choose the best description of its solution if applicable give the solution class=

Respuesta :

Let:

[tex]\begin{gathered} x-4y=8_{\text{ }}(1) \\ -x-4y=8_{\text{ }}(2) \\ \end{gathered}[/tex]

Using elimination method:

[tex]\begin{gathered} (1)+(2) \\ x+(-x)+(-4y)+(-4y)=8+8 \\ -8y=16 \\ y=\frac{16}{-8} \\ y=-2 \end{gathered}[/tex]

Replace the value of y into (1):

[tex]\begin{gathered} x-4(-2)=8 \\ x+8=8 \\ x=8-8 \\ x=0 \end{gathered}[/tex]

The system has unique solution:

[tex](x,y)=(0,-2)[/tex]