The Connecticut River flows at a rate of 6 km / hour for the length of a popular scenic route. If a cruiser to travels 3 hours with the current to reach a drop-off point, but the return trip against the same current took 7 hours. Find the speed of the boat without a current?The speed of the boat without a current is ____ km/hour. (if needed, round to 2 decimal places).

Respuesta :

Given:

Speed of current (y)= 6 km/hour

Distance = d km

Speed of boat in still water = x km/hour

Speed of the cruiser with the current= (x+6) km/hour

Speed of the cruiser against the current= (x-6) km/hour

[tex]\text{Time to travel with the stream=}\frac{d}{x+6}[/tex][tex]3=\frac{d}{x+6}[/tex][tex]3\mleft(x+6\mright)=d[/tex][tex]d=3x+18\ldots.\text{ (1)}[/tex][tex]\text{Time to travel }against\text{ the stream=}\frac{d}{x-6}[/tex][tex]7=\frac{d}{x-6}[/tex][tex]d=7x-42\ldots.\text{ (2)}[/tex]

From equation (1) and (2)

[tex]7x-42=3x+18[/tex][tex]7x-3x=18+42[/tex][tex]4x=60[/tex][tex]x=15[/tex]

Therefore the speed of the without a current is 15km/hour.