A package contains 11 resistors, 2of which are defective. If 4 are selected find the probability of getting the following results.P(1 defective)=

From the given values, we know there are 2 defective resistors and 9 not defective. then, we have
[tex]P(1\text{ defective)=}\frac{C^9_3\times C^2_1}{C^{11}_4}[/tex]where
[tex]C^9_3[/tex]denote the combinations of 9 elements taking in 3, that is 3 good resistor from the 9 which are not defective. Similarly,
[tex]C^2_1[/tex]denotes the combinations of 2 elements taking in 1, that is, 1 defective resistor form the 2 defective resistors.
Then, we have
[tex]P(1\text{ defective)=}\frac{84\times2}{330}[/tex]then, the answer is
[tex]P(1\text{ defective) =}0.509[/tex]