Respuesta :

To answer this, you'll need to recall a formula for finding the rate of change of one variable with respect to another. Given f(x)=x^2 + x +1, the rate of change of the variable with respect to x is given by:

[tex]\begin{gathered} \frac{\differentialD yy}{\square}y}{dx}=n(ax^{n-1}),\text{ where n is the power of variable term, and a is the coefficient.}y}{\square}yy}{dx}=\text{nax}^{n-1} \\ So\text{ when f(x)=x\textasciicircum 2+x+1 is differentiated, we will arrive at } \\ \\ \frac{dy}{dx}=2x+1\text{ The average rate of change of the function within the range (-3,-2) means, we have to use x as -3 and also x as -2 into the derivative function } \\ x=-3 \\ \frac{\differentialD yy}{\square}y}{dx}=2(-3)+1=-6+1=-5y}{\square}y}{dx}=2(-3)+1=-6+1=-5 \\ \text{Also, } \\ x=-2 \\ \frac{\differentialD yy}{\square}y}{dx}=2x+1\text{ becomes}y}{\square}yy}{dx} \\ \\ \end{gathered}[/tex]

Ver imagen DanaE189232