Given
v = 2.90 mi/h
x = 1.20 mi
vs = 2.0 mi/h
θ = 25°
Procedure
Part a)
Velocity of the boat with respect to water stream is given as
[tex]\begin{gathered} v_b=v-v_s \\ v_b=(2.90\cdot\sin 25-2.00)\hat{j}+2.90\cdot\cos 25\hat{i} \\ v_b=-0.77\hat{j}+2.62\hat{i} \end{gathered}[/tex]magnitude of the speed is given as
[tex]\begin{gathered} v_b=\sqrt[]{0.77^2+2.62^2} \\ v_b=2.73mi/h \end{gathered}[/tex]Part b)
Time to cross the river is given as:
[tex]\begin{gathered} t=\frac{x}{v_x} \\ t=\frac{1.2mi}{2.90\cdot\cos25} \\ t=0.46h \end{gathered}[/tex]Part c)
Distance moved by boat in downstream is given as
[tex]\begin{gathered} x=v_yt \\ x=-0.77\cdot0.46 \\ x=-0.354mi \end{gathered}[/tex]Part d)
In order to go straight, we must net speed along the stream must be zero
so we will have
[tex]\begin{gathered} v\sin \theta=v_s \\ 2.90\sin \theta=2.00_{} \\ \sin \theta=\frac{2.00}{2.90} \\ \theta=43.60^{\circ} \end{gathered}[/tex]