Respuesta :

Given the equation:

y = 3x + 4

Given the point:

(x, y ) ==> (2, 5)

Let's find the equation of a line parallel to the given equation and which passes through the point.

Apply the slope-intercept form:

y = mx + b

Where m is the slope and b is the y-intercept.

Hence, the slope of the given equation is:

m = 3

Parallel lines have equal slopes.

Therefore, the slope of the paralle line is = 3

To find the y-intercept of the parallel line, substitute 3 for m, then input the values of the point for x and y.

We have:

y = mx + b

5 = 3(2) + b

5 = 6 + b

Substitute 6 from both sides:

5 - 6 = 6 - 6 + b

-1 = b

b = -1

Therefore, the y-intercept of the parallel line is -1.

Hence, the equation of the parallel line in slope-intercept form is:

y = 3x - 1

ANSWER:

[tex]y=3x-1[/tex]