Respuesta :

Solution:

Given the dimensions of the composite figure below

[tex]\begin{gathered} For\text{ the cuboid:} \\ l=12\text{cm} \\ w=4\text{ cm} \\ h=3cm \\ For\text{ the triangular prism:} \\ a=3\text{ cm} \\ b=4\text{ cm} \\ c=13\text{ cm} \\ h=5\text{ cm} \end{gathered}[/tex]

To find the surface area, SA, of the composite figure, the formula

[tex]SA=2(lh)+2(wh)+(lw)+2(\frac{1}{2}lh)+(bc)+(ah)[/tex]

Substitute the values of the variables into the formula above

[tex]\begin{gathered} SA=2\left(12\cdot3\right)+2\left(3\cdot4\right)+\left(12\cdot4\right)+2\left(\frac{1}{2}\left(12\cdot5\right)\right)+\left(13\cdot4\right)+\left(4\cdot5\right) \\ SA=2(36)+2(12)+(48)+(60)+(52)+20 \\ SA=72+24+48+60+52+20 \\ SA=276\text{ cm}^2 \end{gathered}[/tex]

Hence, the surface area, SA, is

[tex]276\text{ cm}^2[/tex]