Respuesta :

Given:

[tex]\frac{9}{8}\sqrt[8]{x}[/tex]

You can find the antiderivative by integrating it:

1. Set up:

[tex]\int\frac{9}{8}\sqrt[8]{x}\text{ }dx[/tex]

2. You can rewrite it in this form:

[tex]=\frac{9}{8}\int x^{\frac{1}{8}}dx[/tex]

3. Apply this Integration Rule:

[tex]\int x^ndx=\frac{x^{n+1}}{n+1}[/tex]

Then, you get:

[tex]=\frac{9}{8}(\frac{x^{\frac{1}{8}+1}}{\frac{1}{8}+1})+C[/tex][tex]=\frac{9}{8}(\frac{x^{\frac{9}{8}}}{\frac{9}{8}})+C[/tex]

4. Simplify:

[tex]=\frac{9}{8}(\frac{x^{\frac{1}{8}+1}}{\frac{1}{8}+1})+C[/tex][tex]=\frac{9}{8}(\frac{8\sqrt[8]{x^9}}{9})+C[/tex][tex]=\sqrt[8]{x^9}+C[/tex]

Remember this Property for Radicals:

[tex]\sqrt[m]{b^n}=b^{\frac{n}{m}}[/tex]

You can rewrite the expression in this form:

[tex]=\sqrt[8]{x\cdot x^8}+C[/tex]

Applying this Property for Radicals:

[tex]\sqrt[n]{b^n}=b[/tex]

You get:

[tex]=x\sqrt[8]{x}+C[/tex]

5. Knowing that:

[tex]C=0[/tex]

You obtain:

[tex]=x\sqrt[8]{x}[/tex]

Hence, the answer is:

[tex]=x\sqrt[8]{x}[/tex]