Respuesta :

In this case the answer is very simple .

Step 01:

Data

equation of the given line: 5y = -3x -10

y = -3/5x - 2

m = -3/5

given point: (3,-6) x1 = 3 y1 = -6

Step 02:

Slope of the perpendicular line, m’

m' = (-1) / m

[tex]m\text{'}=\frac{-1}{-\frac{3}{5}}=\frac{5}{3}[/tex]

Point-slope form of the line

(y - y1) = m (x - X1)

[tex](y\text{ - (-6)) = }\frac{5}{3}\cdot(x-3)\text{ }[/tex][tex]\begin{gathered} y\text{ +6=}\frac{5}{3}x\text{ -}\frac{5}{3} \\ y\text{ = }\frac{5}{3}x\text{ -}\frac{5}{3}-6 \\ \end{gathered}[/tex][tex]y\text{ = }\frac{5}{3}x\text{ -}\frac{23}{3}[/tex]

The answer is:

The equation of the perpendicular line is:

y = (5/3) x - (23/3)