Let f be the name of the function. The slope-intercept form of the equation written in function notation is?

Solution
Given x-intercept as 6 => a = 6
and y-intercept as -2 => b = -2
the equation is;
[tex]\begin{gathered} \frac{x}{a}+\frac{y}{b}=1 \\ \\ \text{ where a is the x intercept and b is the y intercept} \end{gathered}[/tex][tex]\begin{gathered} \Rightarrow\frac{x}{6}-\frac{y}{2}=1 \\ \\ \Rightarrow\frac{x}{6}-\frac{3y}{6}=1 \\ \\ \Rightarrow\frac{x-3y}{6}=1 \\ \\ \Rightarrow x-3y=6 \\ \\ \Rightarrow x=6+3y \\ \\ \Rightarrow3y=x-6 \\ \\ \Rightarrow y=\frac{x}{3}-\frac{6}{3} \\ \\ \Rightarrow y=\frac{x}{3}-2 \end{gathered}[/tex]The answer is:
[tex]y=\frac{x}{3}-2[/tex]