Using the compound interest formula:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]Where:
A = Amount
P = Principal
r = interest rate
n = Number of times the interest is compounded per year
t = time
so:
[tex]\begin{gathered} r=0.1982 \\ P=10000 \\ n=2 \\ t=54_{\text{ }}weeks\times\frac{1year}{52weeks}=\frac{27}{26} \end{gathered}[/tex][tex]\begin{gathered} A=10000(1+\frac{0.1982}{2})^{2\cdot\frac{27}{26}} \\ A\approx12168.33 \end{gathered}[/tex]