Respuesta :

Given:

[tex]f^{-1}(x)=\frac{x+4}{11}[/tex]

To solve this question, follow the steps below.

Step 01: Substitute f-1 (x) for y.

[tex]y=\frac{x+4}{11}[/tex]

Step 02: Isolate the dependent variable (x).

To do it, first, multiply both sides by 11:

[tex]\begin{gathered} 11y=\frac{(x+4)}{11}*11 \\ 11y=x+4 \end{gathered}[/tex]

Now, subtract 4 from both sides.

[tex]\begin{gathered} 11y-4=x+4-4 \\ 11y-4=x \\ x=11y-4 \end{gathered}[/tex]

Step 03: Substitute x by y and y by x.

[tex]y=11x-4[/tex]

Step 04: Substitute y by f(x).

[tex]f(x)=11x-4[/tex]

Answer:

[tex]f(x)=11x-4[/tex]