on the unit circle., in standard position an angle of which measure is coterminal with an angle that measures 3pi/5 radians

Coterminal angles are angles with the same terminal sides.
[tex]\theta\rightarrow\theta+2\pi\rightarrow\theta-2\pi[/tex]For the given angle, the coterminal angles are;
[tex]\begin{gathered} \theta=\frac{3\pi}{5} \\ \theta+2\pi=\frac{3\pi}{5}+2\pi=\frac{3\pi}{5}+\frac{10\pi}{5}=\frac{13\pi}{5} \\ \theta-2\pi=\frac{3\pi}{5}-2\pi=\frac{3\pi}{5}-\frac{10\pi}{5}=-\frac{7\pi}{5} \\ \theta+2(2\pi)=\frac{3\pi}{5}+4\pi=\frac{3\pi}{5}+\frac{20\pi}{5}=\frac{23\pi}{5} \end{gathered}[/tex]From the given answer choices, the coterminal angle is;
[tex]\frac{23\pi}{5}[/tex]