Suppose that the function f is defined, for all real numbers, as follows.1--x' +4 if x13f(x) = 24if x=1Find f(-4).f(1), and f(3).1(-4) = 0음f(1) = 0X Х?f(3) =

Respuesta :

Answer:

[tex]\begin{gathered} f(-4)=-\frac{4}{3} \\ f(1)=4 \\ f(3)=1 \end{gathered}[/tex]

Step-by-step explanation:

These types of functions are called Piecewise-defined functions since it use a different formula for different parts of its domain because it has a point of discontinuity.

We have the following function:

[tex]f(x)=\begin{cases}-\frac{1}{3}x^2+4\rightarrow ifx\ne1^{} \\ \text{ 4 if x=1}\end{cases}[/tex]

So, to find f(-4), we need to substitute x=-4 into the function for x≠1.

[tex]\begin{gathered} f(-4)=\frac{-1}{3}(-4)^2+4 \\ f(-4)=-\frac{1}{3}(16)+4 \\ f(-4)=-\frac{16}{3}+4 \\ f(-4)=-\frac{4}{3} \end{gathered}[/tex]

Now, for f(1) we know that the outcome is 4.

[tex]f(1)=4[/tex]

Then, for f(3), substitute x=3 into the function for x≠1.

[tex]\begin{gathered} f(3)=-\frac{1}{3}(3)^2+4 \\ f(3)=-\frac{1}{3}(9)+4 \\ f(3)=1 \end{gathered}[/tex]