Respuesta :

step 1

Find the intersection point between the line y=-2.5x+18 and line y=8

so

y=-2.5x+18 -------> equation A

y=8 -----> equation B

substitute equation B in equation A

8=-2.5x+18

solve for x

2.5x=18-8

2.5x=10

x=4

therefore

the first point is (4,8)

step 2

we have the lines

y=-2.5x+18 -------> equation A

y=-x-3 -------> equation C

equate both equations

-2.5x+18=-x-3

solve for x

2.5x-x=18+3

1.5x=21

x=14

Find the value of y

y-x-3

y=-(14)-3

y=-17

therefore

the second point is (14,-17)

step 3

y=8 -----> equation B

y=-x-3 -------> equation C

equate both equations

8=-x-3

x=-3-8

x=-11

therefore

the third point is (-11,8)

step 4

y=1.5x-8 -------> equation D

y=8 -----> equation B

equate both equations

1.5x-8=8

1.5x=16

x=10.67

therefore

the fourth point is (10.67,8)

step 5

y=-2.5x+18 -------> equation A

y=1.5x-8 -------> equation D

equate both equations

2.5x+18=1.5x-8

2.5x-1.5x=-8-18

x=-26

y=1.5(-26)-8

y=-47

therefore

the fifth point is (-26,-47)

step 6

y=-x-3 -------> equation C

y=1.5x-8 -------> equation D

equate both equations

-x-3=-1.5x-8

1.5x-x=-8+3

0.5x=-5

x=-10

y=-(-10)-3

y=7

the point is (-10,7)

the total intersection points are 6