Respuesta :

Given the following exponential equation:

[tex]11^x=189[/tex]

a) give solution in calculator ready form the exact value of x.

So, taking ln for both sides

[tex]\begin{gathered} \ln 11^x=189 \\ x\ln 11=\ln 189 \end{gathered}[/tex]

so, the form for the exact value of (x) will be as follows:

[tex]x=\frac{\ln 189}{\ln 11}[/tex]

b) approximate the solution to the nearest hundredth

By the calculator the answer will be as follows:

[tex]x=2.19[/tex]

===============================================

The logarithm form of the given exponential equation will be as follows:

[tex]x=\log _{11}189[/tex]

Using the following rule of the logarithm:

[tex]\begin{gathered} \log _ab=\frac{\log b}{\log a} \\ \\ x=\log _{11}189=\frac{\log 189}{\log 11} \end{gathered}[/tex]