Respuesta :

Given:

Width of the rectangle =3 and length of the rectangle = 4+x.

Consider the area of the rectangle.

[tex]A=lw[/tex]

Substitute l=4+x and w=3 in the formula.

[tex]A=3(4+x)[/tex][tex]A=12+3x[/tex]

[tex]A=3x+12[/tex]

The area of the rectangle is at least 27 centimeters squared.

[tex]A\le27[/tex]

Substitute A=12+3x in the inequality, we get

[tex]3x+12\le27[/tex]

The inequality is

[tex]3x+12\le27[/tex]

Subtracting 12 from both sides of the inequalities, we get

[tex]3x+12-12\le27-12[/tex]

[tex]3x\le15[/tex]

Dividing both sides by 5, we get

[tex]\frac{3x}{3}\le\frac{15}{3}[/tex][tex]x\le5[/tex]

Hence the solution is

[tex]x\le5[/tex]