P = $25000
R = 7.8%
t = 14
Therefore,
[tex]A=P(1+\frac{r}{n})^{nt}[/tex][tex]\begin{gathered} A=25000(1+\frac{0.078}{12})^{12\times14} \\ A=25000(1+0.0065)^{168} \\ A=25000(1.0065)^{168} \\ A=25000\times2.96971593784 \\ A=\text{ \$}74242.898446 \\ A=\text{ \$}74242.898446 \\ A=\text{ \$}74,242.90 \end{gathered}[/tex]