Given the function defined in the table below, find the average rate of change, in
simplest form, of the function over the interval 1 < x < 5.
2
f(x)
1
77
2
68
3
59
4
50
5
5
41
-

Given the function defined in the table below find the average rate of change insimplest form of the function over the interval 1 lt x lt 52fx1772683594505541 class=

Respuesta :

Given:

Function interval

[tex]1\leq x\leq5[/tex][tex]\begin{gathered} x\rightarrow f(x) \\ \\ 1\rightarrow77 \\ \\ 2\rightarrow68 \\ \\ 3\rightarrow59 \\ \\ 4\rightarrow50 \\ \\ 5\rightarrow41 \end{gathered}[/tex]

Find-: Average rate of change.

Sol:

The average rate of change is:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Choose any two-point.

[tex]\begin{gathered} (x_1,y_1)=(1,77) \\ \\ (x_2,y_2)=(2,68) \end{gathered}[/tex]

So average rate of change is:

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ \\ m=\frac{68-77}{2-1} \\ \\ m=\frac{-9}{1} \\ \\ m=-9 \end{gathered}[/tex]

The average rate of change is -9.