Respuesta :

We will have the following:

First, we are given:

[tex]f(x)=-2x^3+36x^2-162x+2[/tex]

Now, we determine the critical points:

[tex]\begin{gathered} f^{\prime}(x)=-6x^2+72x-162=0 \\ \\ \Rightarrow x=\frac{-(72)\pm\sqrt{(72)^2-4(-6)(-162)}}{2(-6)}\Rightarrow \\ x=9 \\ x=3 \end{gathered}[/tex]

So, we can see that the expression has two critical points at x = 3 & x = 9.

So, at the points:

[tex](3,-214)[/tex]

&

[tex](9,2)[/tex]

Now, we determine which one is the inflection point as follows:

[tex]f^{\prime}^{\prime}(x)=-12x+72[/tex]

So, we analyze the function at the points given:

*x = 3:

[tex]f^{\prime\prime}(3)=-12(3)+72\Rightarrow f^{\prime\prime}(3)=36[/tex]

So, at x there is a local minimum.

*x = 9:

[tex]f^{\prime}^{\prime}(9)=-12(9)+72\Rightarrow f^{\prime}^{\prime}(8)=-36[/tex]

So, at x = 9 there is a local maximum.

The expression given has no inflection point.

Ver imagen ManessaP514373