Given the image below, ⎯⎯⎯⎯⎯⎯⎯⎯⎯,⎯⎯⎯⎯⎯⎯⎯⎯,⎯⎯⎯⎯⎯⎯⎯⎯DY¯,EY¯,FY¯ are perpendicular bisectors of △△ABC.

Remember that
A perpendicular bisector divides a segment into two equal parts
so
AD=DB=61.7
In the right triangle DYB
Apply the Pythagorean Theorem
[tex]YB^2=DY^2+DB^2[/tex]where
YB=64.2
DB=61.7
substitute given values
[tex]\begin{gathered} 64.2^2=DY^2+61.7^2 \\ DY^2=64.2^2-61.7^2 \\ DY^=17.74 \end{gathered}[/tex]Find out the value of EB
In the right triangle YEB
Apply the Pythagorean Theorem
[tex]YB^2=YE^2+EB^2[/tex]where
YB=64.2
YE=51.2
substitute given values
[tex]\begin{gathered} 64.2^2=51.2^2+EB^2 \\ EB^2=64.2^2-51.2^2 \\ EB=38.73 \end{gathered}[/tex]