The total resistance ZT in a circuit is given by Z sub t equals quantity z sub 1 times z sub 2 end quantity over quantity z sub 1 plus z sub 2 end quantity comma where z1 = 70 + 40i and z2 = 50 − 35i. What is the total resistance in standard form? Round to three decimal places.

The total resistance ZT in a circuit is given by Z sub t equals quantity z sub 1 times z sub 2 end quantity over quantity z sub 1 plus z sub 2 end quantity comm class=

Respuesta :

Given

[tex]\begin{gathered} Z_T=\frac{Z_1Z_2}{Z_1+Z_2} \\ Z_1=70+40i,Z_2=50-35i_{} \end{gathered}[/tex]

First, obtain Z_1*Z_2 as shown below

[tex]\begin{gathered} Z_1Z_2=\mleft(70+40i\mright)\mleft(50-35i\mright)=3500+2000i-2450i+1400 \\ \Rightarrow Z_1Z_2=4900-450i=50(98-9i) \end{gathered}[/tex]

On the other hand,

[tex]Z_1+Z_2=(70+40i)+(50-35i)=120+5i=5(24+i)[/tex]

Thus,

[tex]\Rightarrow Z_T=\frac{50(98-9i)}{5(24+i)}=\frac{10(98-9i)}{(24+i)}[/tex]

Finally, the division between complex numbers is given by the formula below

[tex]\frac{a+ib}{c+id}=\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}[/tex]

Therefore, in our case,

[tex]\begin{gathered} \Rightarrow Z_T=10\frac{(98\cdot24-9\cdot1)+(-9\cdot24-98\cdot1)i}{24^2+1^2} \\ \Rightarrow Z_T=10\frac{(2343-314i)}{577} \\ _{} \end{gathered}[/tex]

Rounding to three decimal places,

[tex]\Rightarrow Z_T=40.607-5.442i[/tex]

Thus, the answer is the second option (top to bottom)