Respuesta :
PROBLEM:
To find the point-slope form of the equation of the line passing through points (0, 0) and (-4, 7)
METHOD:
The point-slope form of the equation of a line is given to be:
[tex]\begin{gathered} (y-y_0)=m(x-x_0) \\ \text{where} \\ m=\text{ slope} \\ (x_0,y_0)=\text{ Point on the line} \end{gathered}[/tex]Step 1: Find the slope of the line.
The formula to calculate the slope of a line is given to be:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]We can use the two points provided to find the slope of the line such that:
[tex]\begin{gathered} (x_1,y_1)=(0,0)_{} \\ (x_2,y_2)=(-4,7) \end{gathered}[/tex]Therefore, the slope is given to be:
[tex]\begin{gathered} m=\frac{7-0}{-4-0} \\ m=-\frac{7}{4} \end{gathered}[/tex]Step 2: Pick a point on the line to use for the equation.
[tex](x_0,y_0)=(-4,7)[/tex]Step 3: Use the values gotten from Steps 1 and 2 to write out the equation of the line in the point-slope form:
[tex]\begin{gathered} \Rightarrow y-7=-\frac{7}{4}(x-\lbrack-4\rbrack) \\ \therefore \\ y-7=-\frac{7}{4}(x+4) \end{gathered}[/tex]ANSWER:
The slope-intercept form of the line is given to be:
[tex]y-7=-\frac{7}{4}(x+4)[/tex]