Respuesta :

[tex]5+2\ln (x)=4[/tex]

1. Subtract 5 in both sides of the equation:

[tex]\begin{gathered} 5-5+2\ln (x)=4-5 \\ 2\ln (x)=-1 \end{gathered}[/tex]

2. Divide both sides of the euqation into 2:

[tex]\begin{gathered} \frac{2\ln (x)}{2}=-\frac{1}{2} \\ \\ \ln (x)=-\frac{1}{2} \end{gathered}[/tex]

3. Wrie the lograrithm in exponential form:

[tex]\begin{gathered} \ln (x)=b \\ x=e^b \\ \\ \\ \ln (x)=-\frac{1}{2} \\ \\ x=e^{-\frac{1}{2}} \end{gathered}[/tex]

4. Use properties of powers to rewrite:

[tex]\begin{gathered} x=\frac{1}{e^{\frac{1}{2}}} \\ \\ x=\frac{1}{\sqrt[]{e}} \end{gathered}[/tex]

5. Evaluate:

[tex]x\approx0.607[/tex]

Then, the solution for the given equation is approximately 0.607