Respuesta :
Given the Quadratic Function:
[tex]h(t)=-4.9t^2+70[/tex](a) You need to substitute this value of "t" into the function and evaluate:
[tex]t=1[/tex]In order to find:
[tex]h(1)[/tex]Then, you get:
[tex]h(1)=-4.9(1)^2+70[/tex][tex]h(1)=65.1[/tex]You need to substitute this value of "t" into the function and evaluate:
[tex]t=1.5[/tex]In order to find:
[tex]h(1.5)[/tex]Then, you get:
[tex]h(1.5)=-4.9(1.5)^2+70[/tex][tex]h(1.5)=58.975[/tex](b) You know that "h" represents the height of the ball after it is dropped (in meters) and "t" represents the time (in seconds) after it is dropped. Therefore:
1. Having this function value:
[tex]h(1)=65.1[/tex]You can conclude that, after 1 second, the height of the ball is:
[tex]65.1\text{ }meters[/tex]2. Having this function value:
[tex]h(1.5)=58.975[/tex]You can conclude that, after 1.5 seconds, the height of the ball is:
[tex]58.975\text{ }meters[/tex]Hence, the answers are:
(a)
[tex]h(1)=65.1[/tex][tex]h(1.5)=58.975[/tex](b) - Interpretation for this function value:
[tex]h(1)=65.1[/tex]After 1 second, the height of the ball is:
[tex]65.1\text{ }meters[/tex]- Interpretation for this function value:
[tex]h(1.5)=58.975[/tex]After 1.5 seconds, the height of the ball is:
[tex]58.975\text{ }meters[/tex]