A plane flying horizontally at a speed of 50.0 m/s and at an elevation of 160 m drops a package. Two seconds later it drops a second package. How far apart will the two packages land on the ground? 100 m 162 m 177 m 283 m

Respuesta :

Given Data:

*The speed of the plane is:

[tex]v=50\text{ m/s}[/tex]

*The height from which the package is dropped is:

[tex]h=160\text{ m}[/tex]

*The time at which the second package is dropped is:

[tex]t_2=t_1+2\text{ s}[/tex]

Here,

[tex]t_1[/tex]

is the time at which the first package is dropped.

Explanation:

The initial vertical velocity is:

[tex]v_y=0[/tex]

The acceleration of the motion in vertical y-axis is:

[tex]a=g=9.8\text{ m/s}^2[/tex]

Using the kinematics equation, we get:

[tex]h=v_yt_1+\frac{1}{2}a(t_1)^{2_}[/tex]

Substituting the known values, we get:

[tex]\begin{gathered} h=0+\frac{1}{2}g(t_1)^2 \\ h=\frac{1}{2}g(t_1)^2 \\ t_1=\sqrt{\frac{2h}{g}} \\ =\sqrt{\frac{2(160\text{ m})}{9.8\text{ m/s}^2}} \\ =5.71\text{ s} \end{gathered}[/tex]

The displacement of the first package is:

[tex]\begin{gathered} d_1=v\cdot t_1 \\ =50\text{ m/s}\times5.71\text{ s} \\ =285.7\text{ m} \end{gathered}[/tex]

The time taken by the second package is:

[tex]\begin{gathered} t_2=2s\text{ + 5.71 s} \\ =7.71\text{ s} \end{gathered}[/tex]

The displacement of the second package is:

[tex]\begin{gathered} d_2=v\cdot t_2 \\ =50\text{ m/s}\times7.71\text{ s} \\ =385.5\text{ m} \end{gathered}[/tex]

The distance between the two packages when they are both dropped on the ground is:

[tex]\begin{gathered} D=d_2-d_1 \\ =385.5\text{ m - 285.7 m} \\ \approx100\text{ m} \end{gathered}[/tex]

Final Answer:

The correct option is 100 m.