Respuesta :

Answer:

557 feet

Explanation:

The straight lines drawn around the area form a right-triangle.

In the right-triangle, the distance from Pier 1 to Pier 2 is the Hypotenuse of the right-triangle.

Using Pythagoras Theorem

• Hypotenuse²=Opposite²+Adjacent²

Let the distance from pier 1 to pier 2=x

[tex]\begin{gathered} \text{Hypotenuse}^2=425^2+360^2 \\ \text{Hypotenuse}^2=180625^{}+129600 \\ \text{Hypotenuse}^2=310225 \\ \text{Hypotenuse=}\sqrt[]{310225} \\ \text{Hypotenuse=556.98 fe}et \end{gathered}[/tex]

The approximate distance from pier 1 to pier 2 is 557 feet (correct to the nearest feet).