Each diagram below write the 2 numbers on the sides of x that are multiplied together to get the top number of the x, but added together to get the bottom number of the x.

we write two equations to solve the numbers
[tex]\begin{gathered} a\times b=-15 \\ a+b=-14 \end{gathered}[/tex]solve a from the second equation
[tex]a=-14-b[/tex]and replace on the first
[tex]\begin{gathered} (-14-b)\times b=-15 \\ -14b-b^2=-15 \\ b^2+14b-15=0^{} \end{gathered}[/tex]factor by any method to find b
[tex]b=1,-15[/tex]now replace b on any equation to find a
[tex]\begin{gathered} a\times b=-15 \\ a\times1=-15 \\ a=-15 \end{gathered}[/tex][tex]\begin{gathered} a\times-15=-15 \\ a=1 \end{gathered}[/tex]the values of and b must be -15 and 1
Second
write the equations
[tex]\begin{gathered} a\times b=-75 \\ a+b=-10 \end{gathered}[/tex]solve a from the second equation
[tex]a=-10-b[/tex]replace on first
[tex]\begin{gathered} (-10-b)\times b=-75 \\ -10b-b^2=-75 \\ b^2+10b-75=0 \end{gathered}[/tex]factor to solve
[tex]b=5,-15[/tex]we have two solutions, replace each solutions on any equations to know the true
[tex]\begin{gathered} a\times b=-75 \\ a\times5=-75 \\ a=-\frac{75}{5} \\ \\ a=-15 \end{gathered}[/tex][tex]\begin{gathered} a\times b=-75 \\ a\times-15=-75 \\ a=\frac{-75}{-15} \\ \\ a=5 \end{gathered}[/tex]the values of a and b are 5 and -15
Third
[tex]\begin{gathered} a\times b=12 \\ a+b=7 \end{gathered}[/tex]solve a from the second equation
[tex]a=7-b[/tex]and replace on first
[tex]\begin{gathered} (7-b)\times b=12 \\ 7b-b^2=12 \\ b^2-7b+12=0 \end{gathered}[/tex]and factor
as we can see the two values that come out of factoring will be the values a and b
[tex]b=3,4[/tex]so the values of a and b must be 3 and 4