Each diagram below write the 2 numbers on the sides of x that are multiplied together to get the top number of the x, but added together to get the bottom number of the x.

Each diagram below write the 2 numbers on the sides of x that are multiplied together to get the top number of the x but added together to get the bottom number class=

Respuesta :

we write two equations to solve the numbers

[tex]\begin{gathered} a\times b=-15 \\ a+b=-14 \end{gathered}[/tex]

solve a from the second equation

[tex]a=-14-b[/tex]

and replace on the first

[tex]\begin{gathered} (-14-b)\times b=-15 \\ -14b-b^2=-15 \\ b^2+14b-15=0^{} \end{gathered}[/tex]

factor by any method to find b

[tex]b=1,-15[/tex]

now replace b on any equation to find a

[tex]\begin{gathered} a\times b=-15 \\ a\times1=-15 \\ a=-15 \end{gathered}[/tex][tex]\begin{gathered} a\times-15=-15 \\ a=1 \end{gathered}[/tex]

the values of and b must be -15 and 1

Second

write the equations

[tex]\begin{gathered} a\times b=-75 \\ a+b=-10 \end{gathered}[/tex]

solve a from the second equation

[tex]a=-10-b[/tex]

replace on first

[tex]\begin{gathered} (-10-b)\times b=-75 \\ -10b-b^2=-75 \\ b^2+10b-75=0 \end{gathered}[/tex]

factor to solve

[tex]b=5,-15[/tex]

we have two solutions, replace each solutions on any equations to know the true

[tex]\begin{gathered} a\times b=-75 \\ a\times5=-75 \\ a=-\frac{75}{5} \\ \\ a=-15 \end{gathered}[/tex][tex]\begin{gathered} a\times b=-75 \\ a\times-15=-75 \\ a=\frac{-75}{-15} \\ \\ a=5 \end{gathered}[/tex]

the values of a and b are 5 and -15

Third

[tex]\begin{gathered} a\times b=12 \\ a+b=7 \end{gathered}[/tex]

solve a from the second equation

[tex]a=7-b[/tex]

and replace on first

[tex]\begin{gathered} (7-b)\times b=12 \\ 7b-b^2=12 \\ b^2-7b+12=0 \end{gathered}[/tex]

and factor

as we can see the two values ​​that come out of factoring will be the values ​​a and b

[tex]b=3,4[/tex]

so the values of a and b must be 3 and 4

Ver imagen ShaheerF672729
Ver imagen ShaheerF672729
Ver imagen ShaheerF672729