Respuesta :

Solution:

Let the number of large boxes be

[tex]=x[/tex]

Let the number of small boxes be

[tex]=y[/tex]

The total number of boxes are

[tex]=115[/tex]

The system of equation to represent this will be given below as

[tex]x+y=115\ldots\ldots(1)[/tex]

The large box weigh

[tex]55\text{ pounds each}[/tex]

The small box weigh

[tex]20\text{ pounds each}[/tex]

The total weight of the boxes is

[tex]=4575\text{ pounds}[/tex]

The system of the equation to represent this is

[tex]55x+20y=4575\ldots\text{.}(2)[/tex]

Step 1:

From equation (1) make x the subject of the formula to form equation (3)

[tex]\begin{gathered} x+y=115 \\ x=115-y\ldots\ldots(3) \end{gathered}[/tex]

Step 2:

substitute equation (3) in equation (2)

[tex]\begin{gathered} 55x+20y=4575 \\ x=115-y \\ 55(115-y)+20y=4575 \\ 6325-55y+20y=4575 \\ -35y=4575-6325 \\ -35y=-1750 \\ \text{divide both sides by -35} \\ \frac{-35y}{-35}=\frac{-1750}{-35} \\ y=50 \end{gathered}[/tex]

Substitute the value of y=50 in equation (3)

[tex]\begin{gathered} x=115-y \\ x=115-50 \\ x=65 \end{gathered}[/tex]

Hence,

Number of large boxes = 65

Number of small boxes = 50