The current induce at the point can be given as,
[tex]I=\frac{q}{t}[/tex]Plug in the known values,
[tex]\begin{gathered} I=\frac{(25\text{ kC)(}\frac{1000\text{ C}}{1\text{ kC}})}{0.5\text{ s}}(\frac{1\text{ A}}{1\text{ C/s}}) \\ =50000\text{ A} \end{gathered}[/tex]The magnetic field produced at the point P is given as,
[tex]B=\frac{\mu_0I}{2\pi r}[/tex]Substituting values,
[tex]\begin{gathered} B=\frac{(4\pi\times10^{-7}\text{ Tm/A)(50000 A)}}{2\pi(275\text{ cm)(}\frac{1\text{ m}}{100\text{ cm}})} \\ \approx3.63\times10^{-3}\text{ T} \end{gathered}[/tex]Therefore, the current induced in the wire is 50000 A, the magnetic field acting on the point is
[tex]3.63\times10^{-3}\text{ T}[/tex]which acts in the anticlockwise direction as the current moves in the upward direction.