Respuesta :

ANSWER

• Distance:, 7.81

,

• Midpoint: ,(-4.5, -6)

EXPLANATION

The distance between two points (x₁, y₁) and (x₂, y₂) is given by the Pythagorean Theorem,

[tex]d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2_{}}[/tex]

In this problem, the points are (-7, -9) and (-2, -3),

[tex]\begin{gathered} d=\sqrt[]{(-7-(-2))^2+(-9-(-3))^2} \\ d=\sqrt[]{(-7+2)^2+(-9+3)^2}\text{ } \\ d=\sqrt[]{(-5)^2+(-6)^2}=\sqrt[]{25+36} \\ d=\sqrt[]{61}\approx7.81 \end{gathered}[/tex]

Hence, the distance between P1 and P2 is 7.81 units.

To find the midpoint, we have to find the average between the coordinates of the points,

[tex](x_m,y_m)=\mleft(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\mright)[/tex]

The midpoint in this problem is,

[tex](x,y)=\mleft(\frac{-7-2}{2},\frac{-9-3}{2}\mright)=\mleft(\frac{-9}{2},\frac{-12}{2}\mright)=(-4.5,-6)[/tex]

Hence, the midpoint between P1 and P2 is (-4.5, -6).