Give the standard form of the given equation below. If it is a quadratic equation, then give the a, b, and c coefficients. 3x2-2x-5x(x-7)=(x-2)(x+4)+1

Answer:
[tex]\begin{gathered} -3x^2+31x+7=0 \\ a=-3 \\ b=31 \\ c=7 \end{gathered}[/tex]Step-by-step explanation:
The quadratic equation in standard form is represented by:
[tex]ax^2+bx+c=0[/tex]For the following equation;
[tex]\begin{gathered} 3x^2-2x-5x(x-7)=(x-2)(x+4)+1 \\ 3x^2-2x-5x^2+35x=x^2+4x-2x-8+1 \\ -2x^2-2x+35x=x^2+2x-7 \end{gathered}[/tex]Compute all the terms on the left side, equalizing 0:
[tex]\begin{gathered} -3x^2+31x+7=0 \\ \text{Then, the a,b and c coefficeints would be:} \\ a=-3 \\ b=31 \\ c=7 \end{gathered}[/tex]