Respuesta :
The probability of selecting a 10 or Diamond when a card is drawn from a standard deck of cards is: 17/52
The question asks us to find the probability of picking a 10 or diamond from a deck of cards.
A standard deck of cards contains 52 cards in total.
The deck contains 4 "10s"
And the deck also contains 13 diamond cards.
Thus, we can find the probability of drawing a "10" as:
[tex]P(10)=\frac{n\text{umber of 10s}}{total\text{ number of cards in deck}}=\frac{4}{52}[/tex]Similarly, we can find the probability of drawing a diamond as:
[tex]P(\text{diamond)}=\frac{n\text{umber of diamonds}}{total\text{ number of cards in deck}}=\frac{13}{52}[/tex]Now that we have the individual probabilities, we can find the probability of drawing a 10 or a diamond using the OR probability:
[tex]\begin{gathered} P(A\text{ OR B)= P(A) + P(B)} \\ \text{where, A and B are independent events} \end{gathered}[/tex]Therefore, we can solve the question. This is done below:
[tex]\begin{gathered} \text{Probability of selecting a 10 or a diamond P(10 OR Diamond)=} \\ P(10)+P(\text{Diamond)} \\ \\ \text{But P(10)=}\frac{4}{52} \\ P(\text{Diamond)}=\frac{13}{52} \\ \\ \therefore P(10\text{ OR Diamond)=}\frac{4}{52}+\frac{13}{52}=\frac{17}{52} \end{gathered}[/tex]Thus, the probability of selecting a 10 or Diamond when a card is drawn from a standard deck of cards is: 17/52