Respuesta :

Solution:

The function is given below as

[tex]\begin{gathered} g(x)=\frac{x+4}{x-1} \\ h(x)=2x-1 \end{gathered}[/tex]

To figure out

[tex](goh)(x)[/tex]

To do this , we will substitute x= 2x-1 in g(x)

[tex]\begin{gathered} g(x)=\frac{x+4}{x-1} \\ g(h)(x)=\frac{2x-1+4}{2x-1-1} \\ g(h)(x)=\frac{2x+3}{2x-2} \end{gathered}[/tex]

Hence,

The composte function will be

[tex](goh)(x)=\frac{2x+3}{2x-2}[/tex]

Step 2:

To figure out the domain,

In mathematics, the domain of a function is the set of inputs accepted by the function.

Hence,

The domain of the function is

[tex]\begin{bmatrix}\mathrm{Solution:}\:&\:x<1\quad \mathrm{or}\quad \:x>1\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:1\right)\cup \left(1,\:\infty \:\right)\end{bmatrix}[/tex]