Question 7 of 10For any positive numbers a, b, and d, with b 1,logA. log, a + logodB. log, a-log, dC. d.logbaO D. log, a log, d

Answer:
Option B
Explanation:
Given the logarithm expression:
[tex]\begin{gathered} \log_b\left(\frac{a}{d}\right) \\ a,b.d\text{ positive numbers} \\ b\cancel{=}1 \end{gathered}[/tex]By the quotient law of logarithms:
[tex]$\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$[/tex]Therefore:
[tex]\operatorname{\log}_b\left(\frac{a}{d}\right)=\log_b\left(a\right)-\log_b\left(d\right)[/tex]Option B is correct.