Respuesta :

Answer:[tex]\sec A=\frac{3\sqrt[]{1521}}{22}[/tex]

Explanation:

Given that

[tex]\cot A=-\frac{2}{\sqrt[]{117}}[/tex]

Since

[tex]\begin{gathered} \cot A=\frac{1}{\tan A} \\ \\ We\text{ have} \\ \frac{1}{\tan A}=-\frac{2}{\sqrt[]{117}} \\ \\ \tan A=-\frac{\sqrt[]{117}}{2} \\ \\ \frac{\sin A}{\cos A}=-\frac{\sqrt[]{117}}{2} \end{gathered}[/tex]

Note that:

[tex]\sec A=\frac{1}{\cos A}[/tex]

So,

[tex]\begin{gathered} A=\cot ^{-1}(-\frac{2}{\sqrt[]{117}}) \\ \\ \sin A=\sin (\cot ^{-1}(-\frac{2}{\sqrt[]{117}})) \end{gathered}[/tex]

[tex]\begin{gathered} \sec A=-\frac{\sqrt[]{117}}{2}\sin A \\ \\ =-\frac{\sqrt[]{117}}{2}\times-\frac{3\sqrt[]{13}}{11} \\ \\ =\frac{3\sqrt[]{1521}}{22} \end{gathered}[/tex]