Respuesta :

As given functions are:

[tex]\begin{gathered} f(x)=45x^2-41x+4 \\ g(x)=9x-1 \end{gathered}[/tex]

Given that g(x)=0, So:

[tex]\begin{gathered} g(x)=0 \\ 9x-1=0 \\ x=\frac{1}{9} \end{gathered}[/tex]

Now put the value of x in f(x):

[tex]\begin{gathered} f(x)=45(\frac{1}{9})^2-41(\frac{1}{9})+4 \\ f(x)=45(\frac{1}{81})-\frac{41}{9}+4 \\ f(x)=\frac{5}{9}+4-\frac{41}{9} \\ f(x)=\frac{5+36-41}{9} \\ f(x)=\frac{41-41}{9} \\ f(x)=0 \end{gathered}[/tex]

So the value of f(x) is 0.