Respuesta :

Problem #2:

Given 45-45-90 triangle

The triangle is an isosceles right triangle

so, the legs are congruent ⇒ a = b

Using the Pythagorean theorem

[tex]a^2+b^2=(\text{hypotenuse)}^2[/tex]

as shown, hypotenuse = 7√2

so,

[tex]\begin{gathered} a^2+b^2=(7\sqrt[]{2})^2 \\ a^2+b^2=98\rightarrow(a=b) \\ a^2+a^2=98 \\ 2a^2=98 \\ a^2=\frac{98}{2}=49 \\ a=\sqrt[]{49}=7 \end{gathered}[/tex]

so, the answer will be:

[tex]\begin{gathered} a=7 \\ b=7 \end{gathered}[/tex]

Another method:

The length of the side opposite to the angle 45 = hypotenuse/√2

So,

[tex]a=b=\frac{7\sqrt[]{2}}{\sqrt[]{2}}=7\operatorname{cm}[/tex]