Which quadratic function is represented by the graph?-3O y = 0.5(x + 2)2 + 4o y = 0.5(x + 3)2 - 0.50 y = 0.5(x - 3)2 – 0.5o y = 0.5(x - 2)2 + 4-241(20) 24.0)2(3 -0.5)6x--2

Hello!
First, let's analyze the graph: notice that the concavity is up, so the coefficient a is positive. We also can see that the roots of this graph are 2 and 4.
Other information: the minimum point is (3, -0.5).
Now, let's analyze each alternative:Let's calculate the minimum point of it and compare:
[tex]\begin{gathered} x_V=\frac{-b}{2\cdot a}=-\frac{2}{2\cdot0.5}=\frac{-2}{1}_{}=-2 \\ \\ y_V=-\frac{\Delta}{4\cdot a}=-\frac{b^2-4\cdot a\cdot c}{4\cdot a}=-\frac{2^2-4\cdot0.5\cdot6}{4\cdot0.5}=-\frac{4-12}{2}=-\frac{-8}{2}=4 \end{gathered}[/tex]Notice that these coordinates of the minimum point are different as (3, -0.5), so it's false.
Let's calculate the minimum point too:
[tex]\begin{gathered} x_V=\frac{-b}{2\cdot a}=\frac{-3}{2\cdot0.5}=\frac{-3}{1}=-3 \\ \\ y_V=-\frac{\Delta}{4\cdot a}=-\frac{b^2-4\cdot a\cdot c}{4\cdot a}=-\frac{3^2-4\cdot0.5\cdot4}{4\cdot0.5}=-\frac{9-8}{2}=-\frac{1}{2} \end{gathered}[/tex]Minimum point: (-3, -0.5) is different as (3, -0.5). False too.
Calculating the minimum point:
[tex]\begin{gathered} x_V=\frac{-b}{2\cdot a}=-\frac{-3}{2\cdot0.5}=-\frac{-3}{1}=3 \\ \\ y_V=-\frac{\Delta}{4\cdot a}=-\frac{b^2-4\cdot a\cdot c}{4\cdot a}=-\frac{(-3)^2-4\cdot0.5\cdot4}{4\cdot0.5}=-\frac{9-8}{2}=-\frac{1}{2} \end{gathered}[/tex]We obtained the point (3, -0.5) as the minimum point and it is equal, so, it's true.
Let me show you all these functions in the cartesian plane to confirm it:
Right answer: Alternative C.