Respuesta :

To answer this question we will use the following diagram as reference:

Notice that the angles that measures 80 degrees and a degrees are vertical angles, therefore:

[tex]a^{\circ}=80^{\circ}.[/tex]

Also, notice that the angles that measures b degrees and (6x+30) degrees are supplementary angles, therefore:

[tex]b^{\circ}+(6x+30)^{\circ}=180^{\circ}\text{.}[/tex]

Solving the above equation for b degrees we get:

[tex]\begin{gathered} b^{\circ}+(6x+30)^{\circ}-(6x+30)^{\circ}=180^{\circ}-(6x+30)^{\circ}, \\ b^{\circ}=180^{\circ}-(6x+30)^{\circ}\text{.} \end{gathered}[/tex]

Now, recall that the interior angles of a triangle add up to 180 degrees, therefore:

[tex]50^{\circ}+a^{\circ}+b^{\circ}=180^{\circ}\text{.}[/tex]

Substituting a degrees and b degrees we get:

[tex]50^{\circ}+80^{\circ}+180^{\circ}-(6x+30)^{\circ}=180^{\circ}\text{.}[/tex]

Adding like terms we get:

[tex]310^{\circ}-(6x+30)^{\circ}=180^{\circ}.[/tex]

Subtracting 180 degrees we get:

[tex]\begin{gathered} 310^{\circ}-(6x+30)^{\circ}-180^{\circ}=180^{\circ}-180^{\circ}, \\ 130^{\circ}-(6x+30)^{\circ}=0^{\circ}. \end{gathered}[/tex]

Therefore:

[tex]130-(6x+30)=0.[/tex]

Applying the distributive property we get:

[tex]130-6x-30=0.[/tex]

Adding 6x to the above equation we get:

[tex]\begin{gathered} 130-6x-30+6x=0+6x, \\ 100=6x\text{.} \end{gathered}[/tex]

Dividing the above equation by 6 we get:

[tex]\begin{gathered} \frac{100}{6}=\frac{6x}{6}, \\ x=\frac{50}{3}\text{.} \end{gathered}[/tex]

Answer:

(a)

[tex]x=\frac{50}{3}\text{.}[/tex]

(b)

1) Vertical angles.

2) Supplementary angles.

3) The interior angles of a triangle add up to 180 degrees.

Ver imagen JaeonnaZ327547