Given,
Mass of each sphere = m = 3.33g = 3.33 x 10^-3 kg
Distance between sphere = d = 4.665 cm = 4.665 x 10^2 cm
Acceleration = a = 268.36 m/s^2.
Force on the sphere is given by the below formula,
[tex]\begin{gathered} F=K\frac{(q1)(q2)}{d^2} \\ Where, \\ F=Force \\ K=Constant=9\times10^9\frac{Nm^2}{C^2} \\ q1=q2=q=Charge \\ d=Distance\text{ }between\text{ }spheres \end{gathered}[/tex][tex]\begin{gathered} We\text{ }can\text{ }write\text{ }Force\text{ }as, \\ F=ma \\ Where, \\ m=mass \\ a=acceleration \\ So, \\ F=ma=K\frac{(q1)(q2)}{d^2}=K\frac{q^2}{d^2} \\ \therefore q=d\sqrt[\placeholder{⬚}]{\frac{ma}{K}}=4.665\times10^{-2}\times\sqrt[\placeholder{⬚}]{\frac{3.33\times10^{-3}\times268.36}{9\times10^9}}=46.484\times10^{-8}C \\ \end{gathered}[/tex]Result:- So the charge on the each sphere is 46.484 x 10^-8 C.