Respuesta :

Given the perimeter and area of a rectangle you have to determine its possible width and length.

The perimeter of the rectangle can be calculated as:

[tex]\begin{gathered} P=2w+2l \\ 72=2w+2l \end{gathered}[/tex]

The area of the rectangle can be calculated as:

[tex]\begin{gathered} A=wl \\ 288=wl \end{gathered}[/tex]

With this we have determined an equation system:

[tex]\begin{gathered} 72=2w+2l \\ 288=wl \end{gathered}[/tex]

First step: write the first equation in terms of the length:

[tex]\begin{gathered} 72-2w=2l \\ l=\frac{72}{2}-\frac{2w}{2} \\ l=36-w \end{gathered}[/tex]

Second step: replace the expression obtained in the second formula:

[tex]\begin{gathered} 288=wl \\ 288=w(36-w) \end{gathered}[/tex]

Third step solve the term in parentheses by applying the distributive property of multiplication

[tex]\begin{gathered} 288=36\cdot w-w\cdot w \\ 288=36w-w^2 \end{gathered}[/tex]

Fourth step, equal to zero and solve using the quadratic formula:

[tex]-w^2+36w-288=0[/tex]

This is a quadratic expression where

a=-1

b=36

c=-288

The quadratic formula is

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Replace with the coefficients to calculate the possible values of the width

[tex]\begin{gathered} w=\frac{-36\pm\sqrt[]{(36)^2-4(-1)(-288)}}{2(-1)} \\ w=\frac{-36\pm\sqrt[]{1296-1152}}{-2} \\ w=\frac{-36\pm\sqrt[]{144}}{-2} \\ w=\frac{-36\pm12}{-2} \end{gathered}[/tex]

Fifth step, calculate both possible values for w:

Positive:

[tex]\begin{gathered} w_1=\frac{-36+12}{-2} \\ w_1=12ft \end{gathered}[/tex]

Negative:

[tex]\begin{gathered} w_2=\frac{-36-12}{-2} \\ w_2=24ft \end{gathered}[/tex]

So the possivle values for the width are:

w₁=12ft

w₂=24ft

With this, calculate the possible lengths

Length one:

[tex]\begin{gathered} l_1=36-w_1 \\ l_1=36-12 \\ l_1=24ft \end{gathered}[/tex]

Length two:

[tex]\begin{gathered} l_2=36-w_2 \\ l_2=36-24 \\ l_2=12ft \end{gathered}[/tex]

So the possible values of width and length of the rectangle are:

w₁=12ft, l₁=24ft

w₂=24ft, l₂=12ft