C = Candy corn
$3
Ch = Chocolate
$5
20 bags of candy at least
Cannot spend more than $60
1. Define your variables
x = Candy corn
y = Chocolate
2. Wirte a system of linear inequatlities
20 bags of candy at least
[tex]x+y\ge20[/tex]Cannot spend more than $60
[tex]3x+5y\le60[/tex]3. Solve the system of inequalities
Blue = 3x+5y < 60
Pink = x+y > 20
Now,
Let's find the point where the two lines intersect
[tex]\begin{gathered} 3x+5y=60 \\ x+y=20 \\ \\ \end{gathered}[/tex][tex]\begin{gathered} 3x+5y=60 \\ + \\ -5(x+y=20) \\ \\ 3x+5y=60 \\ + \\ -5x-5y=-100 \\ \\ 3x-5x+5y-5y=60-100 \\ -2x+0=-40 \\ 2x=40 \\ x=20 \end{gathered}[/tex]Now for y
[tex]\begin{gathered} x+y=20 \\ y=20-x \\ y=20-20 \\ y=0 \end{gathered}[/tex]x = 20 Candy corn
y = 0 chocolate
You need to buy 20 Candy corn and spend $ 60
4. Explain/show work
a. Finding the intersection by trading inequalities for equality
b. Use the elimination method to find the solution
c. See if the solution meets the inequality